A lowest-order weak Galerkin finite element method for Stokes flow on polygonal meshes
نویسندگان
چکیده
منابع مشابه
The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes
This paper presents the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces RT[0] for qu...
متن کاملArbitrary order BEM-based Finite Element Method on polygonal meshes
Polygonal meshes show up in more and more applications and the BEMbased Finite Element Method turned out to be a forward-looking approach. The method uses implicitly defined trial functions, which are treated locally by means of Boundary Element Methods (BEM). Due to this choice the BEM-based FEM is applicable on a variety of meshes including hanging nodes. The aim of this presentation is to gi...
متن کاملWeak Galerkin Finite Element Method for Second Order Parabolic Equations
We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...
متن کاملWeak Galerkin Finite Element Methods on Polytopal Meshes
This paper introduces a new weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite element partitions of arbitrary polytopes with certain shape regularity. The paper explains how the numerical schemes are designed ...
متن کاملA weak Galerkin finite element method for the Navier-Stokes equations
In this paper, a weak Galerkin finite element method (WGFEM) is proposed for solving the Navier-Stokes equations (NSEs). The existence and uniqueness of the WGFEM solution of NSEs are established. The WGFEM provides very accurate numerical approximations for both the velocity field and pressure field, even with very high Reynolds numbers. The salient feature is that the flexibility of the WGFEM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2020
ISSN: 0377-0427
DOI: 10.1016/j.cam.2019.112479